MA10209 – Week 1 Tutorial

B3/B4, Andrew Kennedy

Just for fun...

Claim:

If a card shows an even number on one face, then the opposite face is red.

- Which cards must be turned over to test the truth of the statement?
 - Picture: Life of Riley

Tutorial	Friday 14:15 in 8W 2.29 (weeks 1-11)
Exercise Sheets	submit solutions to folders in 4W level 1 by 13:00 each Monday I will return marked work on the Friday of the same week. (part solutions welcome)
Questions etc.:	email me, preferably by Thursday night aik22@bath.ac.uk
Useful resources:	course notes exercise sheets course text people.bath.ac.uk/aik22/ma10209

Exercise Sheet 1

Sets

Intersections & Unions

Maps

- Try to have a look at the sheet before coming to tutorials, even if it's only reading each question to make sure you understand what it's asking
- If you get stuck, email me! <u>aik22@bath.ac.uk</u> Though remember that these questions are designed to make you think.

Notable Sets

Image: Image:

$$\{\} \\ \{a + bi | a, b \in \mathbb{R}\} \\ \{1, 2, 3, \ldots\} \\ \{\frac{a}{b} | a, b \in \mathbb{Z}\} \\ \{\dots, -2, -1, 0, 1, 2, \ldots\}$$

Match the symbol to the name of the set, and (where applicable) its definition in set notation.

Notable Sets (Answers)

symbol set name empty set natural numbers \mathbb{N} ℤ integers \bigcirc rational numbers \mathbb{R} real numbers C complex numbers

set notation

{}
{1,2,3,...}
{...,-2,-1,0,1,2,...}
{
$$\frac{a}{b}|a,b \in \mathbb{Z}$$
}

$$\{a+bi|a,b\in\mathbb{R}\}$$

Intersections and unions

Find non-empty sets A and B such that the following hold: $A \cup B = \{1, 2, 3, 4, 5\};$ $|A \cap B| = 2.$ ▶ 2 $A \cap B = A; \qquad A \neq B.$ > 3 $A \cap B = \{2, 3\};$ $A \cup B = \{1, 2, 3, 4\};$ |A| = |B| = 3.

Maps and composition

Let
$$f, g : \mathbb{R} \to \mathbb{R}$$
 be maps with $f(x) = 2x^2$ and $g(x) = \frac{x}{2}$.

Find the following:

$$\begin{array}{ll}f(2) & g(4)\\f\circ g(2) & g\circ f(2)\end{array}$$

• Show that $g \circ f \neq f \circ g$.

Maps and composition (Answers)

Let $f, g : \mathbb{R} \to \mathbb{R}$ be maps with $f(x) = 2x^2$ and $g(x) = \frac{x}{2}$.

Find the following:

$$f(2) = 8$$
 $g(4) = 2$
 $f \circ g(2) = 2$ $g \circ f(2) = 4$

Consider $y \in \mathbb{R}$. Since $f \circ g(y) = \frac{y^2}{2}$ and $g \circ f(y) = y^2$ are different, $f \circ g \neq g \circ f$.

Domain & Co-domain

What's wrong with this map?

Let $f : \mathbb{Z} \to \mathbb{N}$ be a map, with f(x) = x.

• How could we fix this?

4/4

Domain & Co-domain

What's wrong with this map?

Let $f : \mathbb{Z} \to \mathbb{N}$ be a map, with f(x) = x.

How could we fix this?

Let $f : \mathbb{N} \to \mathbb{N}$ be a map, with f(x) = x. Let $g : \mathbb{Z} \to \mathbb{Z}$ be a map, with g(x) = x. Let $h : \mathbb{Z} \to \mathbb{N}$ be a map, with $h(x) = \begin{cases} x & \text{if } x > 0 \\ -x & \text{if } x < 0 \\ 1 & \text{if } x = 0 \end{cases}$.

Exercise Sheet 1 - overview

- QI if the set has a symbol, e.g. \mathbb{N} , then use that. Otherwise, list the elements in set notation.
- ▶ Q2 draw pictures if it helps, then explain your answer.
- ▶ Q3-4 similar to previous slides.

The identity map $\mathrm{Id}_{\mathbb{R}}$ is defined as $\mathrm{Id}_{\mathbb{R}}: \mathbb{R} \to \mathbb{R}, \qquad x \mapsto x.$ Exercise Sheet 1 - overview

Q5 – requires a bit more thought.
 (d) wouldn't be overly interesting if the answer was no!

Q6 – 'give a geometric meaning':

 (a) - (c) will be shapes in the plane;
 (d) & (e) will be transformations;
 (f) & (g) will be shapes in 3D space.

 A picture is great, but try to describe the shape in words

Exercise Sheet 1 - overview

- Q7 a lot of thinking required.
- Q8 (a) isn't bad: see Q6.
 (b) try to get the idea down on paper, even if you can't express it mathematically.
 (c) consider how you might go about listing the various possible graphs.
- Q9 the binomial expansion is $(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^{n-k} y^k.$

How to write mathematics

This doesn't apply if you're doing rough work, but if you're submitting work, or in an exam, then try to be clear.

• How to Think Like a Mathematician, Kevin Houston

http://www.kevinhouston.net/httlam.html includes two free downloadable chapters on How to Write Mathematics

Some pointers

- Write in sentences include a capital letter and a full stop.
- Explain what you're doing.
- > Equals means equals.
- Use words/symbols appropriately.