MA10209 - Week 3 Tutorial

B3/B4, Andrew Kennedy

Step I: Identify what you need to show

- Sometimes this is obvious from the question, other times you'll need to look up a definition.
- If appropriate, break your proof down into parts.
 E.g. to show that something is bijective, it might help to do it in two stages: (1) injective, then (2) surjective.

Let $f : A \to B$ and $g : B \to C$. Suppose that $g \circ f$ is injective. Show that f is injective.

To show that f is injective we need: For $x_1, x_2 \in A$, $f(x_1) = f(x_2) \Rightarrow x_1 = x_2.$

- Step 2:Work out where to start
 - If you have to prove that "Statement 1" ⇒ "Statement 2" then you start with statement I, and work your way to statement 2.
 - If you have to prove that "Statement 1" ⇔ "Statement 2" then you need to complete two proofs, one starting at each side.

Let $f : A \to B$ and $g : B \to C$. Suppose that $g \circ f$ is injective. Show that f is injective.

To show that f is injective we need: For $x_1, x_2 \in A$, $f(x_1) = f(x_2) \Rightarrow x_1 = x_2$.

> Assume we have $x_1, x_2 \in A$ such that $f(x_1) = f(x_2)$.

- Step 3: Identify relevant definitions and statements
 - Have your notes open in front of you!
 - Write what the definitions are using the symbols you are given in the question.

Let $f : A \to B$ and $g : B \to C$. Suppose that $g \circ f$ is injective. Show that f is injective.

Assume we have $x_1, x_2 \in A$ such that $f(x_1) = f(x_2)$.

Now since $g \circ f$ is injective, we know that $g \circ f(x_1) = g \circ f(x_2) \Rightarrow x_1 = x_2$

- Step 4: Look for things that look like either where you're coming from, or where you're going to.
 - Can you see a result from lectures that would give you what you need provided you can satisfy certain conditions?
 - Does one of the conditions in the question help you progress in your answer?
 - This is the difficult bit you might need to try a few ideas before finding the right answer.

Let $f : A \to B$ and $g : B \to C$. Suppose that $g \circ f$ is injective. Show that f is injective.

Assume we have $x_1, x_2 \in A$ such that $f(x_1) = f(x_2)$.

What conditions are necessary for this step?

Now since $g \circ f$ is injective, we know that $g \circ f(x_1) = g \circ f(x_2) \Rightarrow x_1 = x_2$

Here's what we want to show

- Step 5:Write the proof carefully, showing the conditions hold where necessary.
 - If you use a result from lectures or another question on the sheet,
 - (a) make it clear where the result comes from, and
 - (b) state why you can use it, being careful with symbols if the ones you're using are different.

Let $f : A \to B$ and $g : B \to C$. Suppose that $g \circ f$ is injective. Show that f is injective.

Assume we have $x_1, x_2 \in A$ such that $f(x_1) = f(x_2)$. Then $g(f(x_1)) = g(f(x_2))$ and so $g \circ f(x_1) = g \circ f(x_2)$. Since $g \circ f$ is injective, this gives $x_1 = x_2$, so f is injective. Top Tips (response to sheet 2)

Make sure what you write makes sense.

 $x = y \quad x \sim y \qquad x = x \quad x \sim x$

Once you've finished writing, try to read it out loud.

For
$$x, y \in \mathbb{R}$$
, say $x \sim y$ iff $x = y$.
Since $\forall x \in \mathbb{R}, x = x$, we have $x \sim x$.
So \sim is reflexive.

Top Tips (response to sheet 2)

Be careful to say what you mean

> The following doesn't make sense: $-1 \neq \mathbb{N}$

since the left-hand side is a number and the right-hand side is a set, and we haven't defined when a number is equal to a set.

Top Tips (response to sheet 2)

- Be specific with counterexamples, and general with proofs
 - > A proof needs to cover every available case, but
 - you only need the statement to break at one value for it to be false, so make it absolutely clear by choosing a specific case.

Definitions to look at

- Set X countable
- \blacktriangleright Power set $\mathcal{P}(X)$
- Partition
- Reflexive
- Symmetric
- Transitive
- Equivalence relation
- Equivalence classes
- Transversal

Reflexive, Symmetric, Transitive

Say $x \star y$ iff	reflexive	symmetric	transitive
	×	×	*
	~	×	×
	×	~	×
	×	×	~
	~	~	×
	×	~	~
	~	×	~
	~	~	~

Reflexive, Symmetric, Transitive

Some ideas of relations Let $x, y \in \mathbb{Z}$, and say $x \sim y$ iff... x < y $x - y \leq 1$ x = y $x \neq y$ $x \leq y$ x - y = 1x, y both even $|x - y| \le 2$

Reflexive, Symmetric, Transitive

Say $x \star y$ iff	reflexive	symmetric	transitive
x - y = 1	×	×	*
$x-y \leq 1$	~	×	×
$x \neq y$	×	~	×
x < y	×	×	~
x-y <2	~	~	×
x, y both even	×	~	✓
$x \leq y$	~	×	~
x = y	~	~	~

Let $x, y \in \mathbb{Z}$ and say $x \sim y$ iff x - y is even. Show '~' is an equivalence relation.

Reflexive:

Since for all $x \in \mathbb{Z}$, x - x = 0, we have $x \sim x$

Symmetric: Let $x \sim y$, then x - y is even. Since x - y is even, then so is y - x = -(x - y), so $y \sim x$.

Transitive:

Let $x \sim y$ and $y \sim z$, that is x - y and y - z are even. Then x - z = x - y + y - z = (x - y) + (y - z) is even, so $x \sim z$.

Partitions

Consider the set $\{1, 2, 3, 4, 5, 6\}$.

- How many ways are there to partition this into three subsets?
 - Shape (4,1,1) (⁶₄) = 15
 Shape (3,2,1) (⁶₃) (³₂) = 60
 Shape (2,2,2) (⁶₂) (⁴₂) (²₂) 3! = 15

Transversals

Consider the set $\{1, 2, 3, 4, 5, 6\}$ partitioned into $\{1, 3\}, \{2, 4, 6\}, \{5\}$.

What are all the transversals of this partition?

(There should be 6)

Exercise Sheet 3 - overview

- QI play with lots of definitions
 - (d) similar to Sheet 2 Q8(b)
- Q2 remember you're only looking for sizes don't try to list all the sets!
- Q3 make a list of the possible shapes of the partitions, then figure out how many there are of each shape
- Q4 say whether it's reflexive, symmetric and/or transitive, and give explanations.

Exercise Sheet 3 - overview

• Q6

• (b) $|e^{i\theta}| = 1$ for all $\theta \in [0, 2\pi)$

• Q8

- It is a lot easier to show this is reflexive and symmetric than it is to show it's transitive
- Be careful how you label sets, try not to get confused between them

• Q9

> Part (a) is just more working through the definitions