MA10209 – Week 5 Tutorial

B3/B4, Andrew Kennedy

Top Tips (response to sheet 4)

- Try to think about whether answers make sense.
 - If you take the product of odd numbers and add I you get an even number. The smallest factor (greater than I) of an even number is always 2. You can't write 2 in the form 4m+3.
- If you reach a contradiction, make sure you know what it contradicts and write your conclusion.
- Don't skip too many steps, especially when there aren't many to begin with.

Key concepts

- Euclid's algorithm
- (Divisors & Primes)
- \mathbb{Z}_n & modular arithmetic

Euclid's algorithm

To find gcd(a, b) where a>b:
Find q, r such that

a = qb + r
where r ∈ {0, 1, ..., b − 1}

If r ≠ 0,

relabel a = b, b = r and begin again.

- What is gcd(42,99)?
- Find integers λ_0 and μ_0 such that $42\lambda_0 + 99\mu_0 = 1$.

Modular arithmetic

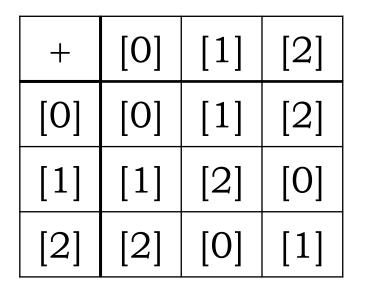
• Write addition and multiplication tables for \mathbb{Z}_3 .

+	[0]	[1]	[2]
[0]			
[1]			
[2]			

×	[0]	[1]	[2]
[0]			
[1]			
[2]			

Modular arithmetic

• Write addition and multiplication tables for \mathbb{Z}_3 .



×	[0]	[1]	[2]
[0]	[0]	[0]	[0]
[1]	[0]	[1]	[2]
[2]	[0]	[2]	[1]

Modular Arithmetic

Useful for eliminating possibilities in certain examples:

Is 167439203 a perfect square?

Modular Arithmetic

Useful for eliminating possibilities in certain examples:

- Is 167439203 a perfect square?
- Work in \mathbb{Z}_{10} :
 - [0]² = [0], [1]² = [1], [2]² = [4], [3]² = [9], [4]² = [6], [5]² = [5], [6]² = [6], [7]² = [9], [8]² = [4], [9]² = [1],
 - Possibilities are [0], [1], [4], [5], [6], [9]
 - ▶ $n^2 = 167439203 \Rightarrow [n^2] = [3]$, or equivalently $n^2 \neq 167439203 \Leftarrow [n^2] \neq [3]$.

Modular Arithmetic

Show that every square number q > 3 is of the form 4m or 4m + 1 for some $m \in \mathbb{N}$.

- Show that if we have two numbers of the form 4m+1, $m \in \mathbb{N}$, then their product must also be of that form.
- Show that a number of the form $4m+3, m \in \mathbb{N}$ has at least one factor also in this form.
 - Do all its factors take this form?

• What is the last digit of $3^{5^{17}}$ (written in decimal)?

- What is the last digit of $3^{5^{17}}$ (written in decimal)?
 - Start by working in \mathbb{Z}_{10} .
 - Notice that $[3^4] = [1] \mod 10$.
 - Now find integers k, s such that 5¹⁷ = 4k + s.
 Write 3^{5¹⁷} = 3^{4k+s} and calculate in Z₁₀.

Exercise Sheet 5 - overview

- QI & 2 Euclid's algorithm
 - Look at similar examples from notes/tutorial
 - ▶ Practice makes perfect ☺
 - See the QI & 2 helpful handout (on the course diary)
- Q4
 - If you're struggling to find the answers, try writing a list of factors of the first few numbers.
 - Explain answers.

Exercise Sheet 5 - overview

• Q6

- ▶ (c) work in \mathbb{Z}_8 .
- Q7
 - An equivalence relation must be reflexive, symmetric & transitive. Show all three.

• Q8

 \blacktriangleright (b) work in \mathbb{Z}_7 - why does this work?

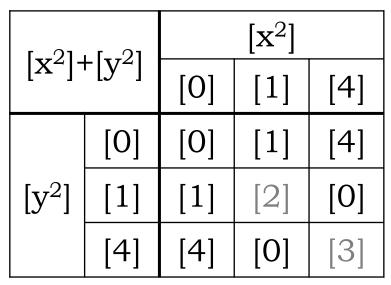
Bonus question

Let $x, y, z \in \mathbb{Z}$ be such that $x^2 + y^2 = z^2$.

Show that at least one of x, y, z is a multiple of 2. Show that at least one of x, y, z is a multiple of 3. Show that at least one of x, y, z is a multiple of 5. Bonus question (part answer)

Let $x, y, z \in \mathbb{Z}$ be such that $x^2 + y^2 = z^2$. Show that at least one of x, y, z is a multiple of 5.

Work in \mathbb{Z}_5 . The square numbers are then [0], [1], [4] (check). Consider $[x^2] + [y^2]$ for all possible combinations of x and y:



By inspection, if
$$[x^2] + [y^2]$$
 is
a square, then either $[x^2] = 0$,
 $[y^2] = 0$ or $[x^2] + [y^2] = 0$.

Then,
$$[a^2] = 0 \Leftrightarrow [a] = 0$$
,
so one of $[x], [y], [z]$ is $[0]$.